NC STATE UNIVERSITY Astrophysically Motivated ²⁰Ne(d,p)²¹Ne

This material is based partly upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-FG02-97ER41033 and DE-FG02-97ER41042.

Victor Beaty (vdbeaty@ncsu.edu), Richard Longland Department of Physics, NC State University

Introduction

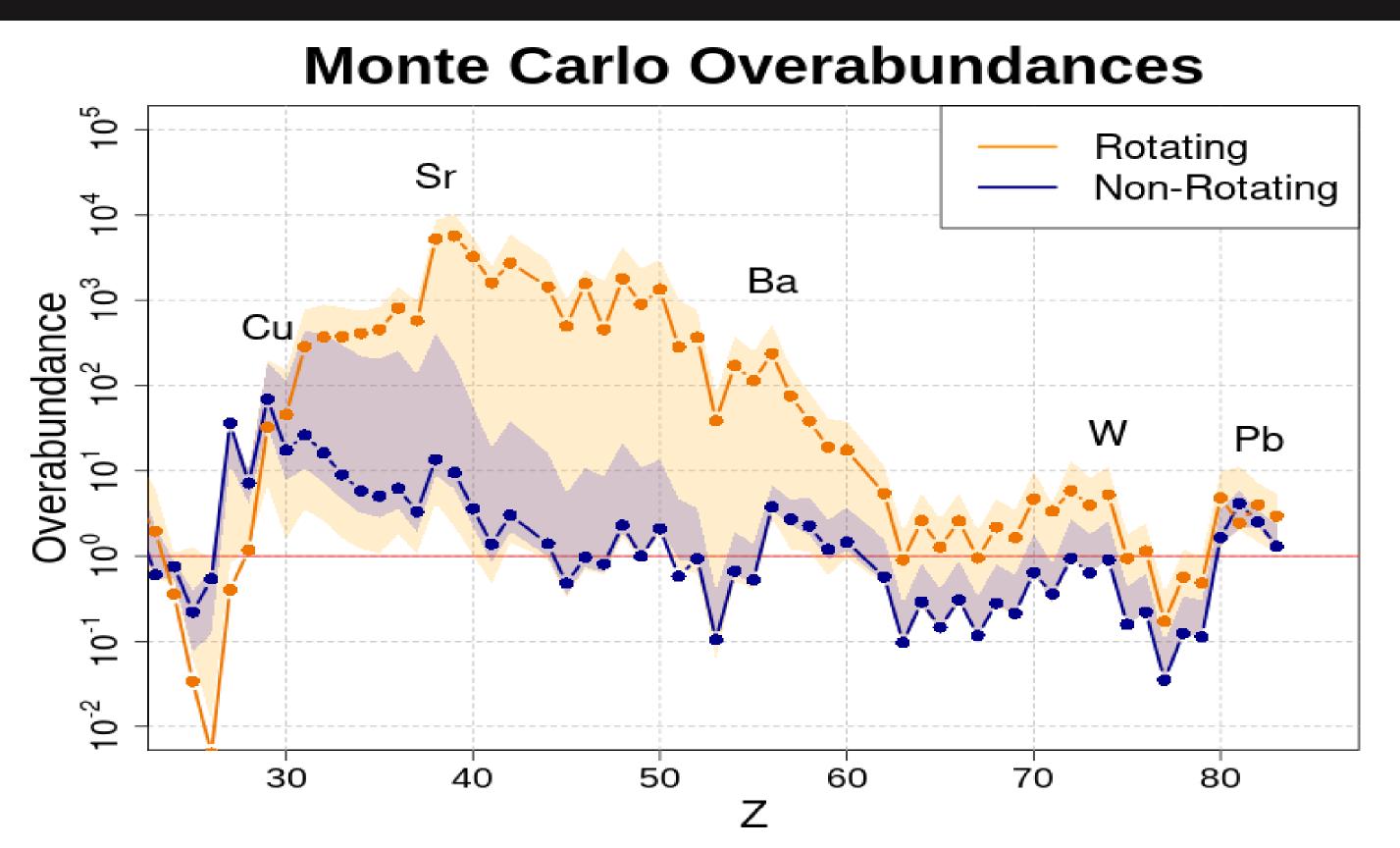


Figure 1: Overabundance for Rotating and Non-rotating Stars with their uncertainties

The s-process in massive starts is found to produce elements up to iron. In simulations the introduction of rotation to these massive stars increases the efficacy of the s-process to produces elements heavier than strontium. These simulations are susceptible to excising data on the nuclear reactions in the nucleosynthesis network.

$^{17}O(\alpha,n)^{20}Ne vs ^{17}O(\alpha,\gamma)^{21}Ne$

Reaction	Spearman Coeff.		
$^{17}\mathrm{O}(lpha,\gamma)^{21}\mathrm{Ne}$	0.4925819		
$^{17}O(lpha,n)^{20}Ne$	-0.4551983		
21 Ne($lpha,\gamma$) 24 Mg	-0.3371195		
22 Ne($lpha,n$) 25 Mg	-0.1801521		
22 Ne($lpha, \gamma$) 26 Mg	0.1609411		

Table 1: Spearmen Coefficients for ¹²⁸Ba $^{17}O(\alpha,n)^{20}Ne$ and $^{17}O(\alpha,\gamma)^{21}Ne$ are competing key reactions for s-process nucleosynthesis of elements heavier than iron. Unfortunately, the cross sections for these reactions have not been measured directly, so their uncertainties are large.

²⁰Ne(d,p)²¹Ne

E _x [keV]	Previous E_x [keV]	$E_{r,\alpha}$ [keV]	$2J^{\pi}$	ℓ_{lpha}	ℓ_n	Γ_{lpha} [eV]	Γ_n [eV]
7420.4(15)*	7420.3(10)	72.5(15)	(5, 7)	1	3	1.2×10^{-33}	14(1), 11(1)
7470(2)	7465(10)	122(2)	$(1, 3)^-$	3,1	1	7.9×10^{-24} , 3.9×10^{-22}	200(140)
7559.1(15)	7547(10)	211.2(15)	$(3,5)^+$	2,0	2,2	$2.4 \times 10^{-14}, 2.5 \times 10^{-13}$	570(30), 420(20)
7602.0(15)	7600(5)	254.1(15)	$(5,7)^{-}$	1	3	2.6×10^{-11}	8(2), 6(2)
			$(7, 9)^+$	2	4	5.6×10^{-12}	0.4(1), 0.3(1)
7619.9(10)	7628(10)	272.0(10)	3^{-f}	1	1	1.7×10^{-10}	8000(1000)
7655.7(22)	7648(2)	307.8(22)	7^{+h}	2	4	9.8×10^{-10}	0.10(7)
7748.8(17)	7740(10)	400.9(17)	5^{+a}	0	2	5.2×10^{-6}	200(140)
7820.1(15)	7810(10)	472.2(15)	$(3,5)^+$	2,0	2	1.8×10^{-5} , 1.7×10^{-4}	560(90), 400(60)
7960(2)	7960.9(13)	612(2)	11^{-g}	3	5	5.3×10^{-8}	0.10(7)
7981(2)	7980(10)	633(2)	3^{-f}	1	1	1.9×10^{-2}	14000(5000)
7982.1(7)	7982.1(6)	634.2(7)				$7.5(15) \times 10^{-6}$	
8008(2)	8009(10)	660(2)	1 ^{-f}	3	1	1.2×10^{-3}	0.20(14)
8069(1)*	8069(2)	721(1)	3^{+a}	2	2	$46.2(46) \times 10^{-3}$	1600(200)
8146(1)	8146(2)	798(1)	3^{+a}	2,0	2	$54.7(55) \times 10^{-3}$	550(150), 400(100)
$8159(2)^{b}$	8155.0(10)	811(2)	9+8	2	4		
8160(2)	8160(2)	812(2)	5^{+a}	0	2	$1.6(2) imes 10^{-3}$	23000(2300)

Table 2: Frost-Schenk ²¹Ne Excited States Table

One viable reaction is the neutron transfer reaction between ²⁰Ne and ²¹Ne. Previous work has found the excited states for ²¹Ne (7749 and 7820 keV) are the most important for the sprocess in these MRS; however, these states were not resolved. Physical targets are needed for this reaction, but the nature of Neon leave only two options, for target creation.

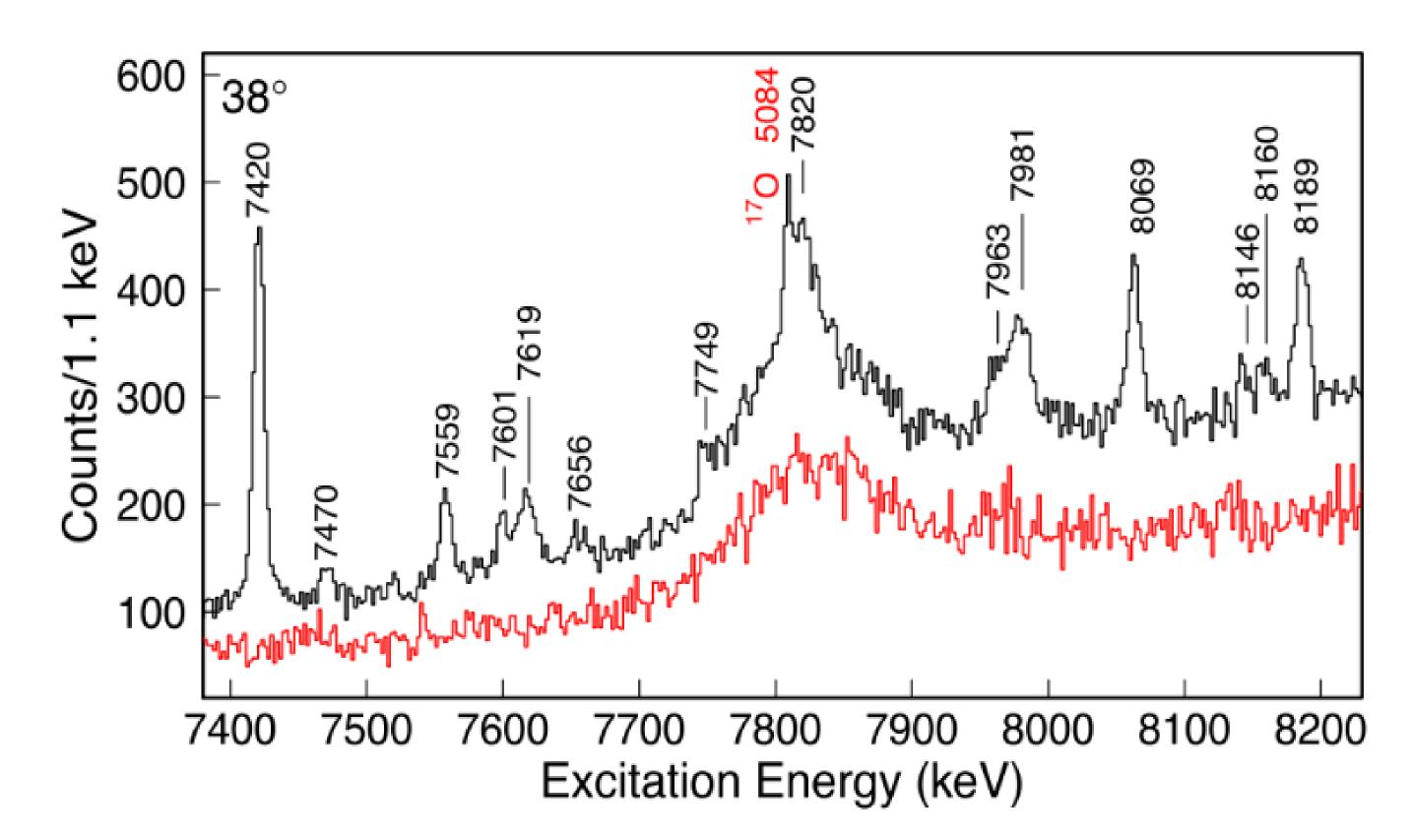


Figure 2: Frost-Schenk Spectrum for ²⁰Ne(d,p)²¹Ne

References

[1]J. Frost-Schenk et al.2022, [2]L.K Fifield and N.A. Orr 1990

Improved ²⁰Ne Targets

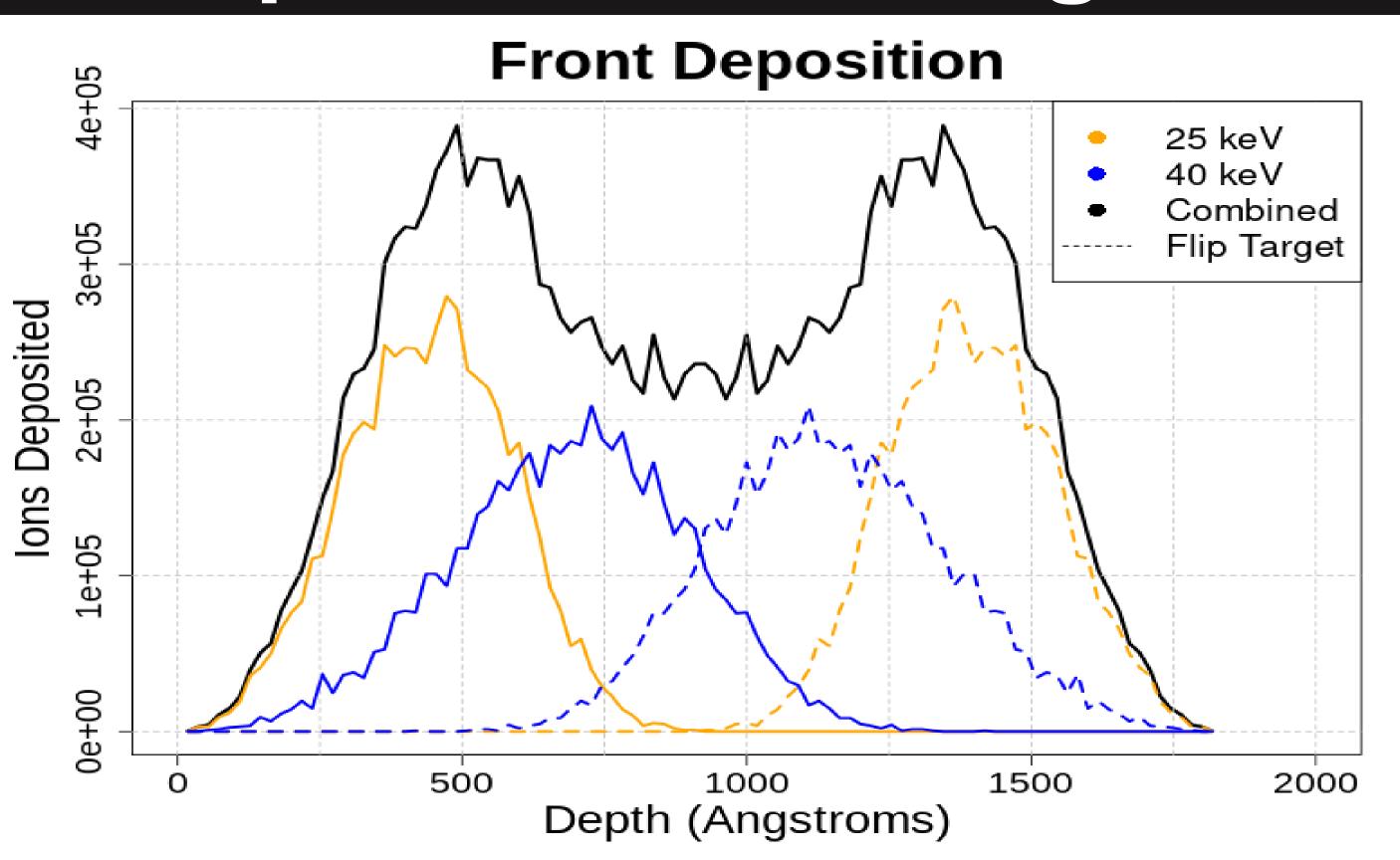


Figure 3: TRIM Calculation for Front Deposition Frost-Schnek used implanted ²⁰Ne targets on 44 µg/cm² carbon foil with a roughly 4% Ne:C abundance ratio. By increasing the Ne available and using thinner carbon we should see improved resolution of the indicated excited states. Multiple Implantation methods were devised to give the most isotropic distribution of ion through the foil.

Future Analysis

- With the installation of the new TORVIS source at TUNL we expect to increased statistics from higher data collections.
- During the experiments we plan to characterize the targets with Rutherford Back Scattering experiments to monitor target degradation over each run.
- Further implanting runs to standardize the foil implanting procedure for future users at TUNL.